
Stochastic analysis of virus transport in aquifers

Linda L. Campbell Rehmann1 and Claire Welty
School of Environmental Science, Engineering, and Policy, Drexel University, Philadelphia, Pennsylvania

Ronald W. Harvey
Water Resources Division, U.S. Geological Survey, Boulder, Colorado

Abstract. A large-scale model of virus transport in aquifers is derived using spectral
perturbation analysis. The effects of spatial variability in aquifer hydraulic conductivity and
virus transport (attachment, detachment, and inactivation) parameters on large-scale virus
transport are evaluated. A stochastic mean model of virus transport is developed by
linking a simple system of local-scale free-virus transport and attached-virus conservation
equations from the current literature with a random-field representation of aquifer and
virus transport properties. The resultant mean equations for free and attached viruses are
found to differ considerably from the local-scale equations on which they are based and
include effects such as a free-virus effective velocity that is a function of aquifer
heterogeneity as well as virus transport parameters. Stochastic mean free-virus
breakthrough curves are compared with local model output in order to observe the effects
of spatial variability on mean one-dimensional virus transport in three-dimensionally
heterogeneous porous media. Significant findings from this theoretical analysis include the
following: (1) Stochastic model breakthrough occurs earlier than local model
breakthrough, and this effect is most pronounced for the least conductive aquifers studied.
(2) A high degree of aquifer heterogeneity can lead to virus breakthrough actually
preceding that of a conservative tracer. (3) As the mean hydraulic conductivity is
increased, the mean model shows less sensitivity to the variance of the natural-logarithm
hydraulic conductivity and mean virus diameter. (4) Incorporation of a heterogeneous
colloid filtration term results in higher predicted concentrations than a simple first-order
adsorption term for a given mean attachment rate. (5) Incorporation of aquifer
heterogeneity leads to a greater range of virus diameters for which significant
breakthrough occurs. (6) The mean model is more sensitive to the inactivation rate of
viruses associated with solid surfaces than to the inactivation rate of viruses in solution.

1. Introduction

The transport of colloids (particles approximately 1022 to 10
mm in diameter, including viruses and bacteria as well as abi-
otic colloids) in groundwater has been recognized as a poten-
tial environmental problem for over 20 years [e.g., Gerba et al.,
1975; Wollum and Cassel, 1978; Yates et al., 1985]. Virus trans-
port, often believed to be limited to the immediate vicinity of
sources such as septic tanks, can become a large-scale problem
under certain circumstances. Several studies completed since
the 1970s have demonstrated that viruses and bacteria can
travel on the order of several hundred meters in some aquifers.
Large-scale colloid transport studies are summarized in Table
1, which indicates that colloids have been observed to travel as
far as 1600 m.

The potential for such large-scale transport of pathogenic
viruses and bacteria through shallow drinking water aquifers is
a significant public health concern [Hurst et al., 1997, chapter
66], especially as potable water sources become more limited
[e.g., New Jersey Department of Environmental Protection, 1996].

Pathogens from land-disposed wastes can contaminate water
supply wells, leading to waterborne disease outbreaks [Craun,
1985]. By recent estimates, approximately 20 –25% of the
groundwater sources of the United States are contaminated
with microbial pathogens [Macler, 1995], including more than
100 types of viruses. The U.S. Environmental Protection
Agency (EPA) draft groundwater disinfection rule proposes
that public water systems be required to disinfect source water
unless natural disinfection (i.e., natural attenuation due to
sorption, filtration, and inactivation) can be demonstrated
[U.S. Environmental Protection Agency, 1992; Macler, 1995].
Macler [1995] notes that hydrogeological factors affecting virus
inactivation, travel times, and distances from contamination
sources to wells must be taken into consideration when deter-
mining the degree of natural disinfection in a given aquifer. In
order to designate suitable well setback distances from possible
contamination sources, there is a need to develop tools to
quantitatively predict the extent of potential pathogenic trans-
port. In addition, preferential flow paths or “macropores” and
the size exclusion effect (in which colloids, unable to fit into
smaller pores, are limited to transport in larger ones) are
recognized as having a significant effect on colloid transport
[Bales et al., 1989; Toran and Palumbo, 1992; McKay et al.,
1993a]. These observations suggest that heterogeneity plays an
important role in transport at the local (of the order of a meter
or less) scale. Therefore, to address larger-scale virus transport

1Now at Hammonton, New Jersey.
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problems in real sediments, it would seem logical that naturally
heterogeneous conditions be incorporated in formulating pre-
dictive models.

Owing to practical constraints, detailed injection and recov-
ery field experiments investigating subsurface virus transport
usually have involved travel distances less than 20 m. None-
theless, in situ studies have yielded significant insight into col-
loid transport under heterogeneous conditions. Recent work
has focused on identifying the effects of solution chemistry
[e.g., Bales et al., 1995, 1997], aquifer mineralogy [Scholl and
Harvey, 1992], heterogeneities (including fractures) [McKay et
al., 1993a, b; Harvey et al., 1993], and the presence of sewage-
derived organic matter [Pieper et al., 1997] on virus and bacte-
ria transport. The work by Pieper et al. [1997] shows that the
presence of sewage-derived organic matter, which often ac-
companies pathogens in groundwater plumes, promotes the
reversibility of virus attachment to the soil grains thus poten-
tially enhancing virus transport. Scholl and Harvey [1992] found
that although changes in groundwater pH and soil grain sur-
face coatings significantly affect bacterial transport in uncon-
taminated groundwater, effects are much less pronounced for
bacteria in sewage-contaminated groundwater.

Although extensive work has been carried out to model
colloid transport in laboratory columns [Jin et al., 1997; John-
son et al., 1996; Sim and Chrysokopolous, 1996; Saiers et al.,
1994; Hornberger et al., 1992; Tim and Mostaghimi, 1991] and at
the small field scale [Harvey and Garabedian, 1991], incorpo-
ration of a stochastic approach to model large-scale transport
in aquifers has not been previously attempted. Yates [1995]
compared model output of the early EPA-sponsored model

VIRALT [Park et al., 1991] to field data obtained at several
sites. The model (which assumes a homogeneous saturated
zone) consistently underestimated observed virus concentra-
tions, in some cases by several orders of magnitude. In order to
account for the effects of heterogeneity on bacterial transport
over small scales in a Cape Cod aquifer, Harvey and Garabe-
dian [1991] successfully employed a two-zone model which
accounted for layers of differing hydraulic conductivities. Sev-
eral investigators have employed a colloid filtration model to
simulate local-scale colloid transport in groundwater [e.g.,
Saiers et al., 1994; Martin et al., 1992; Harvey and Garabedian,
1991], an approach used in this work.

Because porous medium heterogeneities have been found to
significantly affect colloid transport in laboratory and small-
scale field experiments, a number of researchers have sug-
gested that a stochastic approach may be appropriate for mod-
eling microbial transport over larger scales. For example,
Harvey [1991] states that “ z z z the modeling of transport over
longer [e.g., greater than 10 m] distances or thicknesses of the
aquifer would necessitate a stochastic approach because it
would be difficult to define aquifer structure deterministically
at a larger scale.” Hornberger et al. [1992] assert that “ z z z the
current thinking is that a stochastic description of the spatio-
temporal variation of the material properties must be obtained
[in order to determine field-scale dispersivities]. This may be
the direction that will be appropriate for describing the param-
eters controlling bacterial transport in porous media as
well z z z .” Yates and Yates [1990] also note the potential im-
portance of subsurface variability in microbial transport, indi-
cating that the cost and time involved in a detailed aquifer

Table 1. Observed Large-Scale Colloid Transport Distances

Reference Colloid and Diameter

Maximum
Travel

Distance,
m Location

Aquifer
Material,
Thickness

Hydraulic
Conductivity,

m d21

Mean
Pore

Velocity,
m d21

Colloid
Velocity,

m d21

Fletcher and Myers
[1974]

phage T4 1600 Missouri carbonate rock

Noonan and
McNabb [1979]

phages T4, fX 174 920 New Zealand gravel

Martin and Noonan
[1977]

Bacillus sterothermophilus 900 New Zealand gravel O* 104 $164 200 m/d

Anan’ev and Demin
[1971]

Escherichia coli bacteria 350–830 Kazakhstan sand with gravel,
pebbles, 4–8 m

O* 105 160

Martin and Thomas
[1974]

type 2 Aerobacter
aerogenose 243, 0.015 mm

680 Great Britain sandstone 36–180

Vaughn and Landry
[1977]

Coxsackie B3 and
unidentified

408 Babylon, N. Y. coarse sand with
fine gravel

Aulenbach [1979] phage 400 Lake George,
N. Y.

fine sand with
some gravel,
coarse sand

4.6–19.5 3–12

Skilton and Wheeler
[1988]

Serratia marcescens, 0.05 mm;
Enterobacter cloacae,
0.1 mm

122–366 Great Britain fractured chalk

Idelovitch et al.
[1979]

Poliovirus 1, 2, 3 60–270 Dan Region,
Israel

sandstone, silt, clay

Koerner and Haws
[1979]

Poliovirus, Coxsackie B3 and
echovirus

250 Vineland, N. J. Cohansey sand
with coarse gravel

Schaub and Sorber
[1977]

coliphage f2, indigenous
enteroviruses, fecal
streptococcus

183 Fort Devens,
Mass.

silty sand and gravel 8.6

Vaughn and Landry
[1977]

echovirus 6, 21, 24, and 25
and unidentified viruses

45.7 Holbrook, N. Y. coarse sand with
fine gravel,
1–2% silt

*Order of magnitude estimated from given velocity and hydraulic gradient values.
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characterization can be prohibitive and that other methods of
modeling subsurface transport might be more appropriate. On
the basis of such observations we believe that a stochastic
modeling approach is warranted and important for predicting
virus transport at scales of tens to hundreds of meters. The
premise of this paper is that a stochastic modeling approach,
incorporating natural subsurface variability, can lead to an
improved mathematical representation of large-scale virus
transport. Furthermore, we believe that this approach can shed
light on the interaction between aquifer heterogeneity and
known local-scale virus transport phenomena and the resulting
influence on derived large-scale “effective” virus transport pa-
rameters. Although there is debate over whether or not virus
transport models can be used to determine the degree of nat-
ural disinfection, a model incorporating the natural variability
in aquifer materials and the effects on virus transport would
clearly be more realistic than the simplified models [e.g., Park
et al., 1991] currently in use.

Spectral perturbation analysis [Gelhar, 1993] is the method-
ology chosen to develop the stochastic model. In this approach
the current understanding of local-scale virus transport phe-
nomena is linked with a three-dimensional, random hydraulic
conductivity distribution as the driving process in deriving up-
scaled or mean equations for free and attached viruses and
their effective or field-scale parameters. The spectral pertur-
bation approach does have a number of inherent assumptions
that limit its applicability. Local stationarity must apply, indi-
cating that concentration gradients are assumed to be locally
constant, and perturbations in the dependent variables and
parameters must be small. Ergodicity must also be invoked, so
that the averaging distance of a parameter must be much larger
than the correlation scale of the process (in this case, the ln K
field). Finally, conditions must be amenable to an infinite do-
main model. If boundary conditions are important, the model
must be modified in order to incorporate these effects [e.g., Li
and McLaughlin, 1991, 1995]. Both the ergodicity and station-
arity assumptions required by the mathematical technique im-
ply that the results are applicable only to large-distance, large
travel time problems. In this paper, because the total mass in a
virus plume is changing over travel distance owing to inactiva-
tion, detachment, and attachment, a time variable transforma-
tion must be invoked in order for the ergodicity assumption to
hold [see, e.g., Miralles-Wilhelm and Gelhar, 1996b]. It is im-
portant to note that while the set of mathematical assumptions
and approximations of the spectral approach may appear to be
severe, such constraints allow the dominant effects to be as-
certained in an analytical or semianalytical form. Often the
restrictions that are invoked mathematically to obtain a solu-
tion have, in fact, been found to be allowed to be relaxed in
numerical validating tests [see, e.g., Tompson and Gelhar, 1990;
Ababou et al., 1989]. There is a large body of literature that
clearly shows that stochastic methods have proven to be effec-
tive in accounting for field-scale variability [e.g., Gelhar, 1993;
Dagan, 1989] in evaluation of large-scale flow and contaminant
transport problems. Several well-known examples in the liter-
ature include evaluation of macrodispersion of an ideal tracer
[Gelhar and Axness, 1983], unsaturated flow [Mantoglou and
Gelhar, 1987a, b, c], biodegradation of a solute [Miralles-
Wilhelm and Gelhar, 1996b], and density-coupled transport
[Welty and Gelhar, 1991]. In these applications of the spectral
perturbation approach, assumption of a simple local-scale

model has resulted in predictions of field-scale behavior that
differs significantly from that predicted by the local model and
in many cases has better reflected observations of flow and
transport at the field scale. On the basis of this previous expe-
rience we hypothesize that incorporation of spatial variability
into a virus transport model will also result in predictions of
virus transport that differ significantly from those of a homo-
geneous local-scale model applied to a larger scale.

The purpose of this work is to incorporate spatial variability
in both physical aquifer parameters and in virus transport
parameters (attachment, detachment, and inactivation) in a
large-scale transport model and to evaluate the effect of such
variability on subsurface virus transport. Questions to be an-
swered in this paper include the following: (1) How does in-
corporation of subsurface heterogeneity lead to predictions in
large-scale virus transport that differ from predictions made by
models developed for homogeneous media? (2) Does the sto-
chastic approach offer insight into previous observations of
field-scale virus transport under heterogeneous conditions?
This research focuses on the transport of viruses with diame-
ters of the order of 0.02–0.2 mm subject to first-order inacti-
vation. The derived model can be simplified and applied to the
transport of abiotic colloids in groundwater by setting the in-
activation term to zero. This model may also be used to sim-
ulate large-scale transport of nonmotile bacteria under no-
growth conditions. However, it is recognized that physiological
changes during large-scale transport may result in temporal
changes in bacterial attachment, settling, size, and morphol-
ogy. Consideration of bacterial growth and motility would in-
crease the complexity and nonlinearity of the model and is
beyond the scope of this work.

2. Methodology

2.1. Governing Local Equations

The relevant phenomena affecting virus transport in porous
media include advection, dispersion, attachment, detachment,
and inactivation [e.g., Matthess et al., 1988; Corapcioglu and
Haridas, 1984]. Attachment, or the association of viruses and
other colloids with solid surfaces, has been modeled as colloid
filtration [Bales et al., 1991, 1993; Saiers et al., 1994; Johnson et
al., 1996], solute-like adsorption [Tim and Mostaghimi, 1991;
Park et al., 1991], and a combination of equilibrium adsorption
and filtration [Jin et al., 1997]. We chose to include both a
kinetic adsorption-like term and colloid filtration as options for
the attachment mechanism in our local-scale equations so that
we could evaluate the sensitivity of the stochastic results to the
spatial variability of each of these mechanisms. (As shown in
the stochastic mean simulations presented later, we considered
one or the other attachment mechanism but never both to-
gether. The two expressions for attachment are carried
through the derivation for compactness of presentation.) Out
of necessity such descriptions of virus attachment are oversim-
plified and do not adequately account for the fact that there is
a whole spectrum of binding sites within a small volume of
aquifer sediment, nor do they account for the fact that the
makeup of binding sites is subject to spatial variability. The
development of more accurate mathematical descriptions for
colloidal attachment within aquifer sediments is beyond the
scope of this paper.

The governing equations for transport of free and attached
viruses are then given by
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Local-scale transport of free viruses

­C
­t 5 2

­

­ xi
~v iC! 1

­

­ xi
SDij

­C
­ xj

D 2 kdcC

advection dispersion inactivation

2 kcC 2 F 3
2

~1 2 n!

d achG v iC 1 S
1
r

rb

n ky (1a)

adsorption filtration detachment

Local-scale conservation of mass of attached viruses

rb

n
­S
­t 5 2kds

rb

n S 1 kcrC

inactivation adsorption

1 F 3
2

~1 2 n!

d achG v irC 2 S
rb

n ky (1b)

filtration detachment

where C is the mass fraction of free viruses, S is the mass
fraction of viruses attached to solid surfaces, v i is the pore
water velocity, Dij is the local dispersion tensor, kdc is the
inactivation rate of free viruses, kc is the virus adsorption
coefficient, n is the effective porosity, d is d10, the sieve size on
which 90% of grains are retained, ac is the collision efficiency
factor, h is the single collector efficiency, r is the solution
density, rb is the bulk density of porous media, ky is the virus
detachment coefficient, and kds is the inactivation rate of at-
tached viruses.

The local-scale coefficient of hydrodynamic dispersion for
the free viruses is assumed to be of the following form [Bear,
1972], assuming that viruses may be assumed to behave like
solutes for the purpose of determining local dispersivity:

Dij 5 aTuv ud ij 1 ~aL 2 aT!v iv j/ uv u 1 D*d (2)

where aL is the local longitudinal dispersivity, aT is the local
transverse dispersivity, uv u is the magnitude of the pore water
velocity, where uv u 5 (v1

2 1 v2
2 1 v3

2)1/ 2, v i is the vector of the
pore water velocity, d ij is the Kronecker delta function, and D*d
is the porous media molecular diffusion coefficient.

2.2. Filtration and Bulk Density Parameterization
in Terms of ln K

Colloid filtration is often defined in terms of two principal
parameters: the collision efficiency factor (ac), which repre-
sents the fraction of colloids that adhere to the soil grains after
making contact, and the single collector efficiency (h), which
represents the fraction of colloids in the fluid that come in
contact with the grains. The mathematical expression derived
by Rajagopalan and Tien [1976] was chosen to model h because
(1) it is physically based, in that it accounts for the effect of
neighboring grains on particle collection; (2) it has been pre-
viously used in modeling small-scale groundwater systems [e.g.,
Martin et al., 1992]; and (3) recent work has argued for its use
over other models and has improved upon it in order to ac-
count for variable grain-size porous media [Martin et al., 1996;
Logan et al., 1995].

In the Rajagopalan and Tien [1976] model, h is expressed as

h 5 4.0As
1/3S 3pm

BzT
nv i dp dD 22/3

1 AsS 4H
9pmD

1/8 dp
13/8

~nv i!
1/8d15/8

diffusion Van der Waal’s forces
and interception

1 0.00338AsF ~rp 2 r! g
18m G 1.2 dp

2d0.4

~nv i!
1.2 (3)

gravitational effects
and interception

where dp is the colloid diameter, H is the Hamaker constant,
m is dynamic viscosity, rp is the buoyant density of the colloids,
Bz is Boltzmann’s constant, g is acceleration due to gravity, T
is temperature, and As is 2[1 2 (1 2 n)5/3]/[2 2 3(1 2 n)1/3 1
3(1 2 n)5/3 2 2(1 2 n)2]. This complicated expression for
h, incorporating filtration by diffusion, London or van der
Waal’s forces, gravity, and interception, is simplified in this
work in order to more easily incorporate it into the stochastic
model as follows.

The hydraulic conductivity variability is the independent in-
put that drives the stochastic system. Because of the form of
the governing flow equation [see Rehmann, 1998], it is conve-
nient to consider the variability in the natural logarithm of
hydraulic conductivity. A further benefit of this parameteriza-
tion is that perturbations in the natural logarithm are smaller
than perturbations in the hydraulic conductivity field itself,
which is compatible with the small-perturbation assumption of
the theoretical approach. In order to simplify the Rajagopalan
and Tien [1976] model of single collector efficiency, the param-
eters of this model (porosity and effective grain size) are cor-
related with ln K by combining appropriate empirical expres-
sions from the following sources: (1) published relations
between both total porosity and specific yield and median grain
diameter [Davis and DeWiest, 1966]; (2) laboratory column
data relating median grain diameter to hydraulic conductivity
[Kauffman, 1996]; (3) the assumption that specific yield pro-
vides a sufficient estimate of effective porosity [Gorelick et al.,
1993; U.S. Army Corps of Engineers, 1982]; and (4) the Hazen
[1911] relation between the d10 grain size and hydraulic con-
ductivity. Making these substitutions [see Rehmann, 1998], the
single collector efficiency expression then becomes a function
of hydraulic conductivity and mean pore velocity, as well as
other calculated constants such as colloid diameter, tempera-
ture, and colloid buoyant density. Hydraulic conductivity and
velocity values are then varied over ranges observed in natural
groundwater systems, and a system of planes is fit to the ln
K-velocity-h* system, where h* [ [3(1 2 n)/ 2d]v ih (which
can be incorporated directly into (1)). This system is expressed
as

h* ; a1P~a10 1 b10v i!ec10 ln K 1 a1L~a11 1 b11v i!ec11 ln K

diffusion Van der Waal’s forces
and interception

1 a1G~a12 1 b12v i!ec12 ln K (4)
gravitational effects

and interception

where (a10, b10, c10), (a11, b11, c11), and (a12, b12, c12) are fitting
constants, a1P is 6dp

22/3(3pm/BzT)22/3, a1L is 1.5dp
13/8(4H/9pm)1/8,

and a1G is (3/ 2)(0.00338)dp
2[(rp 2 r) g/(18m)]1.2.

Each of the three components of (4) was fit independently,
following the assumption in colloid filtration theory that these
elements are additive. Figure 1 illustrates the two-step fitting
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of h* for the first term (representing diffusion). For virus-size
colloids, diffusion is the dominant mechanism governing trans-
port to grain surfaces [Bales et al., 1991]. Figure 1a shows the
first step of fitting to the h* 2 ln K data for various mean pore
velocities, giving an equation of the form h* 5 A(v) exp (c10

ln K). Figure 1b then shows the fitting of a line to A(v) 5 a10

1 b10v . Curve fits for the diffusion portion of h* are very
good, with R2 values greater than 0.94 in both cases. Curve fits
for the van der Waal’s forces term (R2 5 0.99 for both
parameterization steps) were also excellent, while those for the
gravity term (R2 5 0.96 for the first parameterization step
and 0.70 for the second parameterization step) were not as
good, leading to poorer predictions of the transport of larger
colloids (1–10 mm diameter).

The colloid filtration model of Rajagopalan and Tien [1976]
was originally developed to simulate particle removal in a
deep-bed filters. Deep-bed filters differ significantly from nat-
ural sediments in that their characteristic pore water velocities
are usually much greater than that those typically associated
with aquifer flow (e.g., 100 m d21 versus 1 m d21), and deep-
bed filters are typically composed of a much smaller range of
grain sizes than natural soils. Martin et al. [1996] found that,
using the Rajagopalan and Tien [1976] single collector effi-
ciency expression, the d10 of a volume distribution of grain
sizes most accurately described bacterial transport in sorted
porous media. We therefore incorporated the use of d10 into
our analysis since it aligns the single collector efficiency ex-

pression of Rajagopalan and Tien more closely to that of a
heterogeneous sediment.

Using a similar parameterization, the recurring rb/n group
is also expressed in terms of ln K , where

rb/n 5 r s ar ebr ln K (5)

rb 5 rs(1 2 nb), rs is the soil grain density, nb is total
porosity, and ar and br are fitting parameters.

2.3. Correlation of Virus Parameters With Soil Type

Virus attachment and detachment parameters are taken as
being correlated with soil type as represented by ln K , leading
to attachment and detachment random variables driven by
variability in ln K . The effects of solution (e.g., pH and ionic
strength) and variable virus properties (e.g., surface properties,
size, and shape) on attachment and detachment are not con-
sidered directly and are beyond the scope of this paper. How-
ever, it is important to note that the collision efficiency factor
(ac) can be very sensitive to solution properties, virus type,
and soil properties unrelated to ln K . Laboratory experiments
have shown, for example, that bacteriophages MS2 and
PRD-1, although similar in size, differ significantly in their
transport behavior due to differences in structural architecture
[Redman et al., 1997; Penrod et al., 1996]. Therefore the attach-
ment and detachment coefficients are not expected to be com-
pletely correlated to ln K , and the uncorrelated portion can
account for some of this nonporous media related variability.
The main objective, however, is achieved, as spatial variability
in ac and other attachment and detachment parameters is
incorporated and is expected to exist. Unlike the porosity and
grain size terms present in h and rb/n , there are no established
empirical expressions relating virus attachment and detach-
ment parameters to ln K . Therefore, using the approach of
Garabedian et al. [1988], we postulate that

kc 5 a1 1 b1 ln K 1 d1 (6)

where a1 and b1 are constants and d1 represents random por-
tion of the adsorption coefficient that cannot be accounted for
by variability in the ln K field. Using this approach, it is there-
fore possible for the adsorption coefficient kc to be positively
correlated to ln K(b1 . 0), negatively correlated to ln K(b1 ,
0), or uncorrelated to ln K(b1 5 0).

Similar expressions are used to describe both the detach-
ment and collision efficiency parameters:

ky 5 a2 1 b2 ln K 1 d2 (7)

ac 5 a3 1 b3 ln K 1 d3 (8)

Although (6) through (8) are simple linear relations, their
objective is to capture the general trend of virus attachment
and detachment parameters observed experimentally. Numer-
ical values for ai, bi, and d i (i 5 1, 2, 3) are not readily
available, but an example set of values can be determined in
the laboratory. Several researchers have observed that soils
characterized by different hydraulic conductivity values have
dissimilar colloid attachment and detachment rates. For exam-
ple, Morley et al. [1998] measured bacterial attachment and
detachment rates in a high-conductivity and a low-conductivity
soil and found that the fitted attachment rate was highest in the
low-conductivity material, while the fitted detachment rate was
greatest in the higher conductivity material. Harvey et al. [1993]

Figure 1. Two-step parameterization of h* for the diffusion
portion of filtration expression. (a) Fitting exponential func-
tions to h* versus ln K for different velocities, such that h* 5
A(v) exp (c10 ln K), and (b) fitting a line to A(v) versus v .
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hypothesized that the late arrival of colloids (bacteria and
microspheres) in small field tests might be due to the presence
of iron-rich coatings, minerals which are most abundant in the
finer-grained sediments in the Cape Cod aquifer, leading to
greater colloid attachment. For the simulations performed in
this paper, detachment is assumed to be uncorrelated with ln
K(b2 5 0) in order to focus on attachment effects.

Although there is little evidence in the literature for corre-
lation of virus inactivation with soil type [e.g., Sobsey et al.,
1980, 1986], it is expected that there will be some variability in
the virus inactivation rate in the aquifer. Therefore inactivation
of both free and attached viruses are considered to be corre-
lated with ln K in this work, as represented by

kdc 5 a4 1 b4 ln K 1 d4 (9)

kds 5 a5 1 b5 ln K 1 d5 (10)

where ai, bi, and d i are defined similarly to (6)–(8). While (9)
and (10) were used in the derivation of the stochastic model to
make it as general as possible, in all subsequent simulations
conducted for this paper it was assumed that inactivation was
not correlated with the ln K field, that is, b4 5 b5 5 0. If new
evidence is found demonstrating that virus inactivation rate is
correlated (either positively or negatively) with porous media
type, such relations could be easily incorporated into the model
through the specification of nonzero values of b4 and b5 in the
stochastic results.

2.4. Random Field Representation

The stochastic analytical approach [Lumley and Panofsky,
1964; Gelhar, 1993] used here assumes that the observed three-
dimensional variation in hydraulic conductivity of an aquifer
can be modeled as a second-order stationary, correlated ran-
dom field, where the variability of the porous medium is char-
acterized by statistical parameters rather than by a point-by-
point description. The ln K variability is assumed to drive
variability in other quantities, including physical aquifer pa-
rameters such as effective porosity, as well as virus transport
parameters such as collision efficiency. The three-dimensional
random field representation for the ln K field is given as

ln K~x! 5 f~x! 5 f# 1 f9~x! (11)

where x 5 ( x1, x2, x3) is the vector of spatial coordinates and
the overbar and prime denote mean and perturbation quanti-
ties, respectively. This statistically homogeneous (stationary)
process may be characterized by its covariance function

Rff~j! 5 E@ f9~j 1 x! f9~x!# (12)

which depends only on the separation vector j, where E[ ] is
the expected value operator.

A particular form of (12) which has been shown to ade-
quately represent field data [Hess et al., 1992] is the negative-
exponential covariance function, which is given by

Rff~j! 5 s f
2 exp [2~j1

2/l1
2 1 j2

2/l2
2 1 j3

2/l3
2!1/ 2] (13)

where s f
2 is the variance of the ln K field and l i represents the

correlation scale in the xi direction. This covariance function
has as its corresponding spectrum

Sff~k! 5 s f
2l1l2l3/@p2~1 1 l1

2k1
2 1 l2

2k2
2 1 l3

2k3
2!2# (14)

where k 5 (k1, k2, k3) is the wave number vector. Equations
(13) and (14) imply modeling of a heterogeneous, anisotropic
ln K random field. This form was chosen (as opposed to the
simpler isotropic form) since most natural materials are some-
what anisotropic, at least in the vertical compared to the hor-
izontal (i.e., l1 5 l2 Þ l3). This parameterization allows as-
sessment of the effect of sediment stratification on mean virus
transport.

Because hydraulic conductivity controls the flow and trans-
port processes in porous media, the dependent variables (free
and attached virus concentrations and pore water velocity) will
also vary in a way that can be characterized statistically. These
variables, in addition to coefficients that depend on them or on
ln K , can also be expressed as three-dimensional random
fields. Each can be defined as the sum of a mean and pertur-
bation as follows:

C~x , t! 5 c# ~x , t! 1 c9~x , t! (15a)

S~x , t! 5 s#~x , t! 1 s9~x , t! (15b)

v i~x! 5 v# i~x! 1 v9i~x! (15c)

rb

n ~x! 5 r~x! 5 r# 1 r9~x! (15d)

h*~x! 5 h# *~x! 1 h*9~x! (15e)

kc~x! 5 k# c 1 k9c~x! (15f)

ky~x! 5 k# y 1 k9y~x! (15g)

ac~x! 5 a# c 1 a9c~x! (15h)

kdc~x! 5 k# dc 1 k9dc~x! (15i)

kds~x! 5 k# ds 1 k9ds~x! (15j)

where the overbar and prime represent the mean and pertur-
bation, respectively, and the variable names are defined previ-
ously. For the general linear relations presented as (6) through
(10), the mean and perturbation may be expressed as (ai 1
bif#) and (bif9 1 d i), respectively, and perturbations in rb/n
and h* are completely correlated with ln K . All random fields
given in (15) are by definition a function of space; in addition,
the concentrations of free and attached viruses are dependent
on time when the transient problem is solved. Here d i (i 5
1, z z z , 5) are zero-mean random fields uncorrelated to the ln
K field and are assumed to be characterized by negative expo-
nential covariance functions. The spectra for d i are therefore
of the same form as (14), with the exception that their vari-
ances (sd i

2 ) and correlation scales (l1 i
, l2 i

, l3 i
) may differ

from that of the ln K covariance function.

2.5. Derivation of Mean and Perturbation Equations

Mean conservation equations for free and attached viruses
can be obtained by substituting the random field representa-
tions given in (6) through (10) and (15) into the local equations
(1a) and (1b) and taking the expected value of result to yield
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Mean equation for transport of free viruses

­c#
­t 2 ve

­c#
­z1

5 H2S v#
­c#
­z1

1
­v9ic9

­z i
D 1

­

­z i
SDij

­c#
­z j

D
2 c# ~k# dc 1 k# c 1 a# ch0! 1

r#
r

k# ys# 2 v9ic9a# ch2

2 f9c9~b1 1 b3h0 1 b4 1 a# ch1!

(16a)
1 f9s9

r#
r
S k# y

r sarbrKg
br

r# 1 b2D
2 f9v9ic# ~b3h2 1 a# ch4! 1 f92@2c# ~b3h1 1 a# ch3!

1 s#r21b2r sarbrKg
br] 2 ~c9d91 1 c9d93h0 1 c9d94! 1

r#
r

s9d92J
Mean equation for conservation of mass of attached viruses

­s#
­t 1 f9

­s9

­t
r sarbrKg

br

r# 5 H2s#~k# ds 1 k# y! 1 c#
r

r# ~k# c 1 a# ch0!

2 f9s9S @b2 1 b5# 1
r sarbrKg

br

r# @k# ds 1 k# y#D
1 f92S2s#

r sarbrKg
br

r# @b2 1 b5# 1 c#
r

r# @b3h1 1 a# ch3#D
1 f9v9ic#

r

r# ~b3h2 1 a# ch4! 1 f9c9
r

r# ~b1 1 a# ch1 1 b3h0!

1
r

r# v9ic9a# ch2 1
r

r# ~c9d91 1 c9d93h0! 2 ~s9d92 1 s9d95!J

(16b)

The following manipulations were used to derive the form of
(16): (1) The x1 axis is aligned with the mean flow direction
such that v# 1 5 v# , v# 2 5 v# 3 5 0, and therefore the local
dispersion tensor can be approximated in the form of Naff
[1978] as D11 5 aLv# , D22 5 D33 5 aTv# , Dij 5 0 for i Þ
j . (2) A moving coordinate system [Miralles-Willhelm and
Gelhar, 1996b; Rehmann, 1998, appendix B] has been invoked
in which

z1 5 x1 2 E
0

t

ve dt9 z2 5 x2 z3 5 x3

and ve is the unknown effective free-virus velocity. (3) The
substitution ef# 5 Kg has been made. (4) The exponential
functions of perturbations have been expanded in series form
(ef9 5 1 1 f9 1 f92/ 2 1 z z z ). (5) The colloid filtration
parameter h* has been expanded to give h* [ (h0 1 f9h1 1
v9ih2 1 f92h3 1 f9v9ih4 1 z z z ), where h0 is [Kg

c10(a10 1
b10v# ) 1 Kg

c11(a11 1 b11v# ) 1 Kg
c12(a12 1 b12v# )], h1 is

[Kg
c10c10(a10 1 b10v# ) 1 Kg

c11c11(a11 1 b11v# ) 1 Kg
c12c12(a12

1 b12v# )], h2 is [Kg
c10b10 1 Kg

c11b11 1 Kg
c12b12], h3 is

(1/ 2)[Kg
c10c10

2 (a10 1 b10v# ) 1 Kg
c11c11

2 (a11 1 b11v# ) 1
Kg

c12c12
2 (a12 1 b12v# )], and h4 is [Kg

c10b10c10 1 Kg
c11b11c11 1

Kg
c12b12c12].
The mean virus conservation equations (16) include cross-

perturbation terms (e.g., f9c9) that are not present in the
local-scale equations. These macroscopic terms result from the
averaging process and represent the effect of spatial variability
on virus transport. The first-order perturbation equations nec-
essary to evaluate these cross-perturbation terms are obtained
by subtracting the mean equations (16) from the original ran-

dom-field-substituted equations ((6)–(10) and (15) substituted
into (1a) and (1b)), assuming that products of small perturba-
tions can be approximated by the products of their means and
are expressed as

First-order perturbation equation for transport of free viruses

­c9

­t 5 H2~v# 2 ve!
­c9

­z1
1

­

­z i
SDij

­c9

­z j
D

2 c9~k# dc 1 k# c 1 a# ch0! 1
r#
r

k# ys9

1 f9F2c# ~b1 1 b3h0 1 b4 1 a# ch1! (17a)

1 s#
r#
r
S k# y

r sarbrKg
br

r# 1 b2D G 2 v9iS c# a# ch2 1
­c#
­z i

D
2 c# ~d91 1 d93h0 1 d94! 1

r#
r

s#d92J
First-order perturbation equation for conservation of mass of
attached viruses

­s9

­t 1 f9
­s#
­t

r sarbrKg
br

r# 5 H 2s9~k# ds 1 k# y! 1
r

r# c9~k# c 1 a# ch0!

1 c#
r

r# ~v9ia# ch2 1 d91 1 d93h0! 2 s#~d92 1 d95!

(17b)

1 f9F2s#S r sarbrKg
br

r# @k# ds 1 k# y# 1 @b2 1 b5#D
1

r

r# c# ~b1 1 a# ch1 1 b3h0!G J
This method of truncation theoretically restricts the applica-
tion of the small perturbation results to mildly heterogeneous
porous media, that is, s f

2 ,, 1. This restriction has been
highlighted in the literature for a number of years (see, for
example, recent reviews by Gelhar [1997, p. 162] and Neuman
[1997, p. 238]). For transport of a conservative tracer in iso-
tropic porous media, comparison of stochastic results to Monte
Carlo simulations [see Gelhar and Axness, 1983, Figure 10] and
single-realization simulations [Tompson and Gelhar, 1990; Jus-
sel et al., 1990] have shown that the stochastic results appear to
be robust for s f

2 , 2, which is a surprisingly high degree of
heterogeneity given the theoretical restrictions of the ap-
proach. Although the virus transport results should likewise be
theoretically restricted to being applicable to only very small
values of s f

2 (i.e., s f
2 ,, 1), it is not known to what degree this

theoretical restriction can be violated, but on the basis of other
small perturbation results it is unlikely that the approach will
be applicable to highly heterogeneous aquifers (s f

2 .. 1).
This conjecture can be evaluated by comparison of the theory
with appropriately designed Monte Carlo or single-realization
simulations, which is a planned next step of our work on this
topic.

2.6. Evaluation of Cross-Perturbation Terms

Assuming local statistical homogeneity, the Fourier-Stieltjes
representations of the perturbation terms are given by

f9~x! 5 EEE
2`

`

ei~kzx! dZf~k! (18a)
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v9i~x! 5 EEE
2`

`

ei~kzx! dZvi~k! (18b)

c9~x , t! 5 EEE
2`

`

ei~kzx! dZc~k , t! (18c)

s9~x , t! 5 EEE
2`

`

ei~kzx! dZs~k , t! (18d)

d i~x! 5 EEE
2`

`

ei~kzx! dZdi~k! i 5 1, . . . , 5 (18e)

where, for example, dZf(k) is the Fourier-Stieltjes amplitude
of the f9(x) field and the corresponding spectrum is defined as
Sff(k)dk 5 E[dZf(k)dZ*f(k)] (the asterisk denotes the com-
plex conjugate) [Lumley and Panofsky, 1964].

Substituting (18a) through (18e) into the perturbation equa-
tions (17a) and (17b) and by uniqueness of the spectral repre-
sentation [Lumley and Panofsky, 1964], the Fourier-Stieltjes
amplitude for virus concentration can be expressed in terms of
the Fourier-Stieltjes amplitudes of ln K and other random
fields as follows:

Fourier-Stieltjes amplitude equation for transport of free vi-
ruses

­dZc~k , t!
­t

5 H2dZc~k , t!S ik1v# 1 kikjDij 1 @k# dc 1 k# c 1 a# ch0#D
1

r#
r

dZs~k , t!k# y 1 dZf~k!F 2c# ~b1 1 b3h0 1 b4 1 a# ch1!

(19a)

1 s#
r#
r
S k# y

r sarbrKg
br

r# 1 b2D G 2 dZvi~k!S ­c#
­z i

1 c# a# ch2D
2 c# ~dZd1~k! 1 h0dZd3~k! 1 dZd4~k!! 1

r#
r

s#dZd2~k!J
Fourier-Stieltjes amplitude equation for conservation of mass
of attached viruses

­dZs~k , t!
­t

5 H2dZs~k , t!~k# ds 1 k# y! 1 dZc~k , t!
r

r# ~k# c 1 a# ch0!

1 dZf~k!F2
­s#
­t

r sarbrKg
br

r# 1 c#
r

r# ~b1 1 a# ch1 1 b3h0!

(19b)

2 s#S r sarbrKg
br

r# ~k# ds 1 k# y! 1 ~b2 1 b5!D G
1 c#

r

r# ~dZvi~k!a# ch2 1 dZd1~k! 1 dZd3~k!h0!

2 s#~dZd2~k! 1 dZd5~k!!J

In order to solve this system of equations for dZc(k) and
dZs(k), it is necessary to perform an intermediate step involv-
ing a time scaling of the concentration perturbation amplitudes
[Miralles-Wilhelm and Gelhar, 1996a, b; Rehmann, 1998]. Be-
cause the total masses of free and attached viruses vary in time
owing to attachment (adsorption and filtration), detachment,
and inactivation, changes in time of mean concentrations, con-
centration perturbations, and mean gradients cannot be ne-
glected as they are for a conservative solute. For the conser-
vative case these quantities can be considered relatively
constant, leading to a simple solution to the Fourier-Stieltjes
amplitude expression using the approximation of Gelhar
[1987]. This approximation uses the fact that the integral to be
solved is composed of exponentially weighted functions of time
which can be expanded in a Taylor series about a single point
in time. To solve the Fourier-Stieltjes amplitude expressions
for free and attached viruses (equations (19a) and (19b)), it is
necessary to follow the plumes of free and attached viruses in
time to effectively remove these changes in concentration due
to attachment, detachment, and inactivation. In this new ref-
erence frame, advection and dispersion are separated from
other effects, allowing solution of the system of equations
using the Taylor series expansion approximation.

Considering attachment, detachment, and inactivation to be
the cause of temporal changes in the concentration perturba-
tion amplitudes (dZc(k) and dZs(k)), a simplified system of
equations is solved as an intermediate step (appendix A). So-
lution of the simplified system introduces concentration per-
turbation amplitudes for the conservative case (advection and
dispersion only), dZĉ(k) and dZŝ(k), by incorporating the
initial condition dZc(k) 5 dZĉ(k) and dZs(k) 5 dZŝ(k) at
time 5 0. When the perturbation equations are expressed in
terms of these conservative quantities, the system of equations
is solved using the approximation of Gelhar [1987] described
above. Finally, these expressions are transformed to yield
equations for the original concentration perturbation ampli-
tudes:

Simplified Fourier-Stieltjes amplitude equation for transport
of free viruses

dZc~x , t! 5
1 2 e2b*t

b* H dZfS2c# @a# ch1 1 b1 1 b3h0 1 b4#

1 s#
r#
r F k# y

r sarbrKg
br

r# 1 b2G D 1 dZvi~Gi 2 c# a# ch2!

2 c# ~dZd1 1 dZd3h0 1 dZd4! 1
r#
r

dZd2s#J (20a)

Simplified Fourier-Stieltjes amplitude equation for conserva-
tion of mass of attached viruses

dZs~x, t! 5
1 2 e2b*t

b* HdZfFr

r# c#~a# ch1 1 b1 1 b3h0!

2
­s#
­t

rsarbrKg
br

r# 2 s#S~k#ds 1 k# y!
rsarbrKg

br

r# 1 b2 1 b5DG
1

r

r# c#~dZv ia# ch2 1 dZd1 1 dZd3h0! 2 s#~dZd2 1 dZd5!J
(20b)
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where Gi 5 2­c# /­z i and b* 5 [ik1v# 1 kikjDij 1 ((k# c 1
a# ch0 1 k# dc) 1 a1)] 1 [(k# y 1 k# ds) 1 b2]. Parameters a1

and b2 are unknown effective loss coefficients for free and
attached viruses, respectively, which differ from the mean loss
rates and were introduced in the intermediate time-transfor-
mation step. These final expressions are used to evaluate the
cross-perturbation terms in the mean equations (16a) and
(16b).

In order to evaluate the products of perturbations appearing
in the mean equations, the appropriate cross spectra must be
evaluated. From (16a) and (16b), noting that f92 5 s f

2, the
cross terms to be evaluated are

f9v9i 5 EEE
2`

`

Sfvi~k! dk 5
v#
g EEE

2`

`

Sff~k! dk (21)

f9c9 5 EEE
2`

`

Sfc~k! dk 5 5 32c# ~a# ch1 1 b1 1 b3h0 1 b4!

1 s#
r#
r 1 k# y

r sarbrKg
br

r# 1 b22 4 EEE
2`

`

1 2 e2b*t

b* Sff~k! dk

1 ~Gj 2 c# a# ch2! EEE
2`

`

1 2 e2b*t

b* Sfvj~k! dk6 (22)

v9ic9 5 EEE
2`

`

Svic~k! dk 5 5 32c# ~a# ch1 1 b1 1 b3h0 1 b4!

1 s#
r#
r 1 k# y

r sarbrKg
br

r# 1 b22 4 EEE
2`

`

12e2b*t

b* Sfvi~k! dk

1 ~Gj 2 c# a# ch2!EEE
2`

`

1 2 e2b*t

b* Svivj~k! dk6 (23)

f9s9 5 EEE
2`

`

Sfs~k! dk 5 5 3 c#
r

r# ~a# ch1 1 b1 1 b3h0!

2
­s#
­t

r sarbrKg
br

r# 2 s#1 ~k# ds 1 k# y!
r sarbrKg

br

r# 1 ~b2 1 b5!2 4
z EEE

2`

`

1 2 e2b*t

b* Sff~k! dk 1
r

r# c# a# ch2

z EEE
2`

`

1 2 e2b*t

b* Sfvj~k! dk6 (24)

c9d91 5 EEE
2`

`

Scd1~k! dk 5 2c# EEE
2`

`

1 2 e2b*t

b* Sd1d1~k! dk

(25)

s9d92 5 EEE
2`

`

Ssd2~k! dk 5 2s# EEE
2`

`

1 2 e2b*t

b* Sd2d2~k! dk

(26)

c9d93 5 EEE
2`

`

Scd3~k! dk 5 2c# h0

z EEE
2`

`

1 2 e2b*t

b* Sd3d3~k! dk (27)

c9d94 5 EEE
2`

`

Scd4~k! dk 5 2c# EEE
2`

`

1 2 e2b*t

b* Sd4d4~k! dk

(28)

s9d95 5 EEE
2`

`

Scd5~k! dk 5 2s# EEE
2`

`

1 2 e2b*t

b* Sd5d5~k! dk

(29)

Evaluating these integrals (see appendix B) for the case of a
highly stratified aquifer (i.e., l1 5 l2 .. l3) [Gelhar and
Axness, 1983], substituting the results into the mean equations
(16), and returning to the original coordinate system, the re-
sultant mean field-scale free-virus transport and attached-virus
conservation equations are given by [Rehmann, 1998]

Final mean equation for transport of free viruses

­c#
­t 1

­s#
­t

r#
r

I1ijQR

5 H2ve

­c#
­ x1

1 Dij

­2c#
­ xi­ xj

1 S v# 2

g2 I1ijD ­2c#
­ x1

2 1
r#
r

~k# y 1 Ax!s#

2 ~@k# dc 1 k# c 1 a# ch0# 1 Ac!c# 2
­s#
­ x1

r#
r S v#

g
1 veRD I1ijQJ

(30a)

Final mean equation for conservation of mass of attached
viruses

­s#
­t 2

­2s#
­t2

R2

B I1ij 1
­c#
­t

r

r#
PR
B I1ij

5 H2
1
B ~@k# y 1 k# ds# 1 Bs!s# 1

r

r#
1
B ~@k# c 1 a# ch0# 1 Bc!c#

2
­c#
­ x1

r

r#
v#
g

P
B I1ijJ (30b)

where new terms appearing in the mean equations that differ
from the local equations (1a) and (1b) are understruck, g is
v# n/KgJ1, I1 i j

is (s f
2l1/v# )(1 2 exp [2v# t/l1(x 1 1)])/(x 1
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1), I4 ij

(m) (m 5 1, z z z , 5) is (sdm
2 l1m/v# )(1 2 exp [2v# t/

l1m(x 1 1)])/(x 1 1), x is 2(l1/v# )( Ac 1 (Bs/B)), ve is
[v# 2 2I1 i j

(v# /g)(P 1 b4)], and

Ac 5 @s f
2~b3h1 1 a# ch3 1 v# /g~b3h2 1 a# ch4!! 2 I1ij~~P 1 b4!

2

1 PQ! 2 ~I4ij
~1! 1 h0

2I4ij
~3! 1 I4ij

~4!!#

Bc 5 F s f
2~b3h1 1 a# ch3 1 v# /g~b3h2 1 a# ch4!! 2 ~I4ij

~1! 1 h0
2I4ij

~3!!

2 I1ijP~~P 1 b4! 1 Q 1 ~k# dsR 1 b5!! 2
­I1ij

­t PRG
Ax 5 @s f

2Rb2 2 I1ijQ~~P 1 b4! 1 Q 1 ~k# dsR 1 b5!! 2 I4ij
~2!#

Bs 5 F s f
2R~b2 1 b5! 2 I1ij~PQ 1 @Q 1 ~k# dsR 1 b5!#

2!

2
­I1ij

­t R~Q 1 ~k# dsR 1 b5!! 2 ~I4ij
~2! 1 I4ij

~5!!G
B 5 1 2 2 R~Q 1 k# dsR! 2 R2

­I1ij

­t

(detachment and inactivation of attached viruses)

P 5 b1 1 a# ch1 1 b3h0 1 a# ch2v# /g

~attachment of free viruses!

Q 5 k# yR 1 b2 ~detachment of attached viruses!

R 5
r sarbrKg

br

r#

On the basis of a comparison of the form of the mean equa-
tions (16) above with the system of equations solved as an
intermediate step (appendix A), the unknown coefficients in-
troduced in the intermediate time transformation step are
found to be a1 5 2[(k# dc 1 k# c 1 a# ch0) 1 Ac] and b2 5
2(1/B)[(k# y 1 k# ds) 1 Bs], respectively.

Equations (30a) and (30b) illustrate that the incorporation
of spatial heterogeneity gives rise to a transport equation that
differs significantly in form from that of the local model. We
quantify this significance later in this paper. Original coeffi-
cients (multiplying gradients and concentrations) have been
modified considerably, and several new terms appear that were
not present in the original local-scale equations. The free virus
effective velocity is now a function of aquifer heterogeneity
parameters as well as virus transport parameters (filtration,
adsorption, and inactivation). Similarly, longitudinal disper-
sion is a function of aquifer and virus transport parameters,
and coefficients multiplying free and attached virus concentra-
tions contain additional terms. Of particular interest, products
of attachment terms and detachment terms appear several
times, an effect which could not have been predicted a priori.
Time derivatives for both free and attached viruses appear in
both conservation equations, and new spatial gradient terms
are now present. Results initially appear counterintuitive:
“Loss” of free viruses in (30a) now depends on detachment as
well as on the spatial variability of filtration and adsorption.
“Gain” of detaching viruses in (30a) is a function of attachment
parameters. It is a formidable if not impossible task to visually
inspect (30a) and (30b) to quantitatively interpret the effects of
incorporating heterogeneity on virus transport.

3. Stochastic Mean Simulations
In order to determine whether the new terms in the mean

equations specified by (30) represent significant effects on the
virus transport process, numerical simulations implementing
(30) were conducted to quantify the effects of heterogeneity on
mean one-dimensional virus transport. Simulated conditions
represent, for example, the transport of viruses from the center
of a constant source trench (or line of wells) into a steady flow
field or virus transport along an individual groundwater flow
line (e.g., the experimental setup used by Schijven et al. [1997]).
Finite differences (fully implicit Euler scheme) were used to
represent the system of mean equations, and simulations were
run for a period of 2 years over a scale of 750 m. Spatial and
temporal discretizations were selected based on grid Peclet
number (less than or equal to 10) and Courant number (less
than 1) criteria to be 0.1 m and 1 hour, respectively, for the
majority of the simulations. The details of the finite difference
scheme and the FORTRAN code developed to implement the
scheme are provided by Rehmann [1998].

Aquifer characteristics (s f
2, l1, Kg, J1, v# , and aL) for the

Cape Cod, Massachusetts, study site are used as a base case
and are summarized in Table 2 along with other base-case
parameters. For illustrative purposes, breakthrough curves
36 m from the source are shown below for a number of differ-
ent scenarios. This distance was chosen because it is 10 times
the horizontal correlation scale (3.6 m) of the aquifer [Hess et
al., 1992] thereby allowing the viruses or colloids sufficient
travel distance to justify the ergodicity assumption. The mean
collision efficiency value (a# c 5 0.007) is based on field stud-
ies conducted at Cape Cod by Harvey and Garabedian [1991],
and the mean detachment rate (0.09 d21) is based on typical
values observed in laboratory and field studies [e.g., Kinoshita
et al., 1993; Bales et al., 1991]. Correlation coefficients for
collision efficiency (a3 and b3) were obtained by selecting a
second practical data value, based on observations that attach-
ment increases with decreasing hydraulic conductivity [e.g.,
Morley et al., 1998] and fitting a line to the two data points. In
the base-case model, detachment was not correlated to hydrau-
lic conductivity (again in order to focus on filtration effects).

Table 2. Base-Case Input Parameters for Mean Simulations

Variable Definition Value

Kg mean hydraulic conductivity, exp (f#) 112 m d21

s f
2 ln K variance 0.24

l1 horizontal correlation scale 3.6 m
J1 mean hydraulic gradient 0.0015
v# mean pore water velocity 0.42 m d21

aL local longitudinal dispersivity 0.01 m
dp mean virus diameter 0.1 mm
h0 single collector efficiency parameter 660 d21

k# c mean adsorption coefficient 0.0
a1 first adsorption coefficient 0.0
b1 second adsorption coefficient 0.0
CV1 coefficient of variation of d1 0.0
k# y mean detachment rate 0.09 d21

a2 first detachment coefficient 0.09 d21

b2 second detachment coefficient 0.0
CV2 coefficient of variation of d2 0.5
a# c mean collision efficiency 0.007
a3 first collision efficiency coefficient 0.0001
b3 second collision efficiency coefficient 0.00104
CV3 coefficient of variation of d3 0.5
k# dc free virus inactivation rate 0.0
k# ds attached virus inactivation rate 0.0
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Stochastic or mean breakthrough curves are compared to
those of a conservative tracer and those of the local virus
transport model. In this paper the “local” model of virus trans-
port as applied to the field is implemented by using (1a) and
(1b) but with constant macrodispersion added to local disper-
sion, which is typically the way that the local-scale virus trans-
port model has been used in previous larger-scale transport
studies [see, e.g., Yates, 1995]. This allows relevant comparison
of the “scaled up” local model to the stochastic mean virus
transport model and to a field-scale model of a conservative
chemical tracer. If this adjustment were not made, the com-
parison of the local-scale virus transport model to the stochas-
tic mean model would be unclear because of the disparity in
local versus macrodispersivity values. This “scaled up” local
model will be referred to henceforth as the modified local
model. Similarly, macrodispersion was incorporated into the
conservative tracer simulations.

3.1. Sensitivity to Aquifer Parameters

Figure 2 shows the effect of varying s f
2 while holding all

other parameters constant. The modified local model break-
through curves differ significantly from those of the stochastic
model, with stochastic model breakthrough occurring much
earlier than modified local model breakthrough. Modified lo-
cal breakthrough curves for even the highest ln K variance

value (1.48) do not even appear on the linear scale plot shown.
For a fairly heterogeneous aquifer, characterized by an ln K
variance of 1.48, the mean model free virus concentration has
leveled off to about the inflow value starting at approximately
160 days. Conversely, the modified local model shows a con-
centration of only 0.1% of the influent concentration after 2
years, illustrating the significant impact of the added effects of
spatial variability on virus transport.

Another significant effect shown in Figure 2 is that of in-
creasing ln K variance on the stochastic model output. As s f

2

increases, virus breakthrough occurs sooner. When a very high
s f

2 is used, virus breakthrough can actually precede that of a
conservative tracer. Early breakthrough of microorganisms
compared to that of a conservative tracer has been observed in
several studies [e.g., Powelson et al., 1993; Toran and Palumbo,
1992; Bales et al., 1989] and has been attributed to virus trans-
port in preferential flow paths or size exclusion effects. A high
ln K variance implies that more of the aquifer is characterized
by the tails of the ln K distribution. The “high ln K” tail may be
thought of as very conductive lenses through which viruses are
directed thus leading to faster virus transport. The increased
aquifer volume included in the “low ln K” tail would also
contribute to the size exclusion effect, as less of the aquifer
would be accessible to viruses. Extremely high s f

2 values (e.g.,
4.0) caused model aberrations, most likely reflecting the limi-
tations of the small perturbation approach.

Figure 3 shows the effect of increasing the mean ln K value
(Kg) on virus transport. In order to maintain the same mean
pore velocity for the different Kg values, the hydraulic gradient
value ( J1) was adjusted. Breakthrough curves are shown for
four mean ln K values: 112, 750, 4200, and 2.5 3 104 m d21,
corresponding to a range of soils from clean sand to coarse
gravel. Variations in mean ln K values affect mean transport
parameters, in this case a# c, where attachment efficiency de-
creases for more conductive materials. This effect was ob-
served by Morley et al. [1998] and has been attributed to such
factors as the high relative abundance of iron-rich mineral
deposits in finer-grained materials, leading to increased attach-
ment efficiency [Harvey et al., 1993]. In addition, recent work
by H. Dong (personal communication, 1999) has also shown a
negative correlation between collision efficiency and grain size
for a series of soil columns.

Figure 3 illustrates that the stochastic and modified local
models differ the most for the lower Kg values selected, with
the stochastic breakthrough curves greatly preceding the mod-
ified local breakthrough curves. For the smallest Kg value used
(112 m d21), the absolute concentration values are so small
that, even though the curves differ by approximately 8 orders
of magnitude, these effects cannot be seen on the linear plot in
Figure 3. As Kg increases, the modified local and stochastic
models approach each other. For Kg equal to 4200 m d21, the
modified local and stochastic models differ slightly, and in the
highest Kg case (2.5 3 104 m d21) the stochastic and modified
local model breakthrough curves coincide, indicating that het-
erogeneity does not play a significant role in a very conductive
aquifer and therefore that the modified local model may be
sufficient for modeling virus breakthrough in this case. For the
highest Kg value, virus breakthrough approaches tracer break-
through but does not precede it, suggesting that early virus
breakthrough is attributable to heterogeneity and not high
mean ln K values.

In addition, as the mean ln K value is increased, the effect of
aquifer heterogeneity on virus breakthrough decreases. The

Figure 2. Sensitivity of breakthrough to s f
2 (a) on linear

scale and (b) on logarithmic scale. Breakthrough curves of
mean virus transport (solid bold curves), modified local virus
transport (solid thin curves), and a conservative tracer (dashed
curves) for the base-case parameters, indicated in Table 2, with
sensitivity to s f

2 are shown.
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stochastic model essentially predicts a higher dependence on
s f

2 for a less conductive aquifer than for a more conductive
aquifer. The mean simulation results also suggest that as the
aquifer becomes increasingly conductive, filtration would play
a smaller role in transport, which intuitively makes sense. As
an extreme case, a colloid of 0.1 mm diameter injected into a
gravel and cobble aquifer would be expected to behave like a
conservative tracer, as interactions with solid surfaces would be
minimal. Consequently, spatial variability of aquifer parame-
ters may not be very important, and the stochastic and modi-
fied local model output would be very similar. At the other end
of the scale a virus injected into a tight sand and silt formation
would have extensive surface interactions. Heterogeneity in
transport parameters in this case would play a much larger
role, leading to significantly different modified local and sto-
chastic model results. Because transport parameters are cou-
pled to ln K in this model, higher ln K variability implies, to
some degree, higher transport parameter variability.

Varying a third aquifer parameter, horizontal correlation
scale (l1), had a minimal effect on virus transport, and there-
fore the simulation results testing this sensitivity are not shown.
Virus breakthrough occurs earlier for larger correlation scales;
increasing l1 from 1.0 to 3.5 m has more of an effect than an
increase from 5.0 to 10.0 m, indicating that an asymptotic effect

may be occurring. Increasing the horizontal correlation scale
reflects an increased persistence in the horizontal soil lenses,
which could lead to viruses traveling farther in high-
conductivity lenses without encountering low-conductivity ma-
terials. Despite this persistence in horizontal soil lenses, virus
breakthrough is much later than tracer breakthrough for all
values of l1 tested. Because the horizontal correlation scale
does not vary over several orders of magnitude (unlike Kg and
s f

2), one would not expect as significant differences in break-
through curves in this sensitivity analysis.

3.2. Sensitivity to Virus Properties

The basic colloid filtration theory predicts that colloids of
diameters approaching 1 mm will be retained the least in a
given porous medium because of a combination of factors:
Brownian motion (the governing process for very small col-
loids) is decreasing as the colloid diameter is increasing, and
gravity, interception, and London/van der Waal’s forces are
only beginning to become significant for this particle diameter.
Figure 4 shows the effect of varying colloid diameter (dp) and
ln K variance (s f

2) on free colloid concentrations at 36 m after
2 years. For both s f

2 values of 0.24 and 1.00 the modified local
model predicts a maximum concentration for colloid diameters
around 1 mm, with the higher ln K variance value yielding
slightly higher colloid concentrations. For the stochastic model
with s f

2 equal to 0.24, maximum concentration is again for a
colloid diameter of approximately 1 mm, but the range of
colloid diameters for which significant breakthrough has oc-
curred by 2 years is significantly different from the modified
local model. Where the modified local model predicts c# /c# 0 of
less than 10210 for a colloid diameter of 0.1 mm, the stochastic
model predicts c# /c# 0 approaching 0.001. When s f

2 is increased
to 1.0, the lower limit of colloid diameter which is transported
the most is decreased even further, so that even colloids as
small as 0.01 mm reach a normalized concentration of 0.08 by
2 years.

Figure 3. Sensitivity of breakthrough to Kg (a) on linear
scale and (b) on logarithmic scale. Breakthrough curves of
mean virus transport (solid bold curves), modified local virus
transport (solid thin curves), and a conservative tracer (dashed
curves) for the base-case parameters indicated in Table 2, with
sensitivity to Kg are shown.

Figure 4. Sensitivity analysis of dp for different ln K variance
values. Colloid diameter dp versus scaled mean free virus con-
centration (solid bold curves) and modified local free virus
concentration (solid thin curves) for the base-case parameters
indicated in Table 2 with sensitivity to ln K variance are
shown. Normalized concentrations are at x 5 36 m after 2
years. The larger particle sizes (1–10 mm) represent size classes
that are considerably larger than the viruses for which the
model was developed. Consequently, predictive capability of
the model may be less accurate for the larger particles because
the effect of gravity does not appear to be adequately captured.
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For the most heterogeneous aquifer the stochastic model
predicts that significant breakthrough occurs for colloids
throughout the size range of 0.01–10 mm. As the degree of
aquifer heterogeneity (i.e., s f

2) decreases, only colloids with
diameters between 0.1 and 10 mm significantly break through
after 2 years. Therefore increasing heterogeneity (s f

2) in the
stochastic model results in faster breakthrough of the smallest
colloids (a size class which includes viruses 0.02–0.2 mm in
diameter). Increasing s f

2 in the modified local model results in
increased macrodispersion and faster breakthrough, but the
difference is not as marked as in the case of the stochastic
mean virus model. Therefore, in a very heterogeneous aquifer
we would expect that colloids of all sizes would be significantly
transported. As discussed above, a very heterogeneous aquifer
is characterized by regions of very high and very low conduc-
tivity. Colloids may be transported easily in the high-
conductivity regions regardless of size. As the aquifer hetero-
geneity decreases, the available high-conductivity lenses also
decrease, resulting in colloid transport that is more sensitive to
the less conductive materials.

Harvey and Garabedian [1991], in field observations of bac-
teria being advected down gradient within a plume of organi-
cally contaminated groundwater at the Cape Cod U.S. Geo-
logical Survey study site, observed that the colloid filtration
theory of Yao et al. [1971] underpredicted the relative abun-
dance of small bacteria (0.2 mm) and overestimated the rela-
tive abundance of the larger bacteria (1.2 and 1.4 mm in par-
ticular) 680 m down gradient from the source. On the basis of
these observations the stochastic model may account for the
increase in the smaller size class but may also overpredict the
transport of larger colloids. This may be attributed to gravita-
tional effects that are not captured well by the h* parameter-
ization. It should be noted that these larger sizes are well above
the range of viruses, the latter of which are the focus of this
work.

Figure 5 shows a comparison of filtration-only and adsorp-
tion-only abiotic virus transport models in which the effective
“attachment” rates (4.6 d21) and detachment rates (0.09 d21)
are equal in both the filtration-only and the adsorption-only
cases, and all other parameters are identical in the two models.

The filtration-only model predicts significantly earlier break-
through than the adsorption-only model. In order to force the
two breakthrough curves to coincide, either the mean adsorp-
tion rate must be significantly decreased or the mean collision
efficiency must be increased. Early virus breakthrough for a
given hydraulic conductivity field could be modeled using ei-
ther a moderate mean collision efficiency value in a filtration-
only model or a very low mean adsorption rate in an adsorp-
tion-only model. Therefore the selected governing process for
virus attachment (either adsorption or filtration) significantly
affects the interpretation of the virus breakthrough curve.

Because both attachment mechanisms are first-order kinetic
functions of the free-virus concentration, it would be possible
to generate identical breakthrough curves using either expres-
sion. In order to decide which expression best represents virus
transport behavior in the field, one approach would be to
determine h0 based on aquifer parameters, fit the first-order
rate coefficient (equivalent to a# ch0 or k# c) to the data, and
back out the mean collision efficiency (a# c). Depending on the
magnitude of a# c (i.e., theoretically 0 # a# c # 1, typically of
the order of 0.01), use of the filtration model could be deemed
appropriate or inappropriate. It should be noted that the early
U.S. EPA-sponsored model VIRALT [Park et al., 1991] which
simulates virus transport subject to first-order adsorption was
found to significantly underpredict virus transport at several
field sites [Yates, 1995]. If the same first-order attachment rate
had been used but with virus filtration as the modeled process,
the stochastic results suggest that much more extensive trans-
port would have been predicted (i.e., increased virus concen-
trations at a particular point in space), better representing
observed concentrations.

It is also important to note that the derived mean model is
extremely sensitive to the mean collision efficiency value (a# c).
Increasing a# c from 0.007 to 0.01 had a significant effect on
virus transport predictions, as did increasing the uncorrelated
random portion of a# c(d3). On the basis of these observations,
characterization of a# c in the field appears to be an important
consideration in accurately modeling field-scale virus transport
using the colloid filtration model.

Up to this point, inactivation or first-order decay has been
neglected in order to focus discussions on attachment and
detachment variability. In this section the effects of varying the
inactivation rates of free and attached viruses are investigated.
Inactivation is assumed to be uncorrelated to ln K (b4 5 b5 5
0), and random variability in inactivation is assumed to be zero
for the simulations shown in Figure 6. The most complete
breakthrough occurs for k# dc 5 k# ds 5 0.0, since no viruses are
being lost to inactivation. If only unattached viruses inactivate,
normalized breakthrough concentrations decrease by approx-
imately 2 orders of magnitude from the conservative (no inac-
tivation) case, but concentrations continue to increase after 2
years. If, however, only attached viruses are inactivating, nor-
malized breakthrough concentrations decrease by approxi-
mately 16 orders of magnitude and level off after about 300
days. Incorporating both free and attached inactivation results
in a further decrease in concentrations of approximately 2
orders of magnitude. On the basis of these results the mean
model is more sensitive to attached virus inactivation than it is
to free virus inactivation. Similar behavior is seen with the
modified local model, but concentrations are several orders of
magnitude lower. Therefore, in both the mean and modified
local models the incorporation of differing inactivation rates
for free and attached viruses has a significant effect on model

Figure 5. Comparison of breakthrough for filtration-only
and adsorption-only models. Breakthrough curves of mean
virus transport for the base-case parameters indicated in Table
2, with both adsorption-only and filtration-only models having
the same mean “attachment” rates of 4.6 d21 (i.e., a# ch0 5
k# c 5 4.6 d21) are shown.
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predictions. This is an important feature to incorporate be-
cause researchers have observed that attached-virus inactiva-
tion can occur either more slowly [Bagdasar’yan, 1964; Hurst et
al., 1980; Sobsey et al., 1986] or more quickly [Blanc and Nasser,
1996] than free-virus inactivation. The stochastic model pre-
sented offers insight into the importance of adequately quan-
tifying inactivation, as well as other virus transport and aquifer
parameters in modeling and understanding large-scale virus
transport in heterogeneous aquifers.

4. Summary and Conclusions
The results of this research indicate that the incorporation of

heterogeneity has a marked effect on virus and colloid trans-
port predictions. The spectral stochastic approach was used
successfully to incorporate spatial variability into free virus
transport and attached virus conservation equations. By taking
into consideration heterogeneity of both aquifer and virus
transport parameters, a mean conservation model was devel-
oped that differs significantly from the local-scale model on
which it was based. The resulting mean model equations con-
tain terms that are not present in the local-scale equations,
including new temporal and spatial derivatives and additional
large-scale attachment, detachment, and inactivation terms.
These macroscopic coefficients are not easily separated into
the categories of attachment, detachment, and inactivation
because they include products and quotients of these input
parameters.

In order to observe the overall effect of heterogeneity on
virus transport, mean numerical simulations were conducted.
A finite difference code was developed to simulate one-
dimensional, mean virus transport under steady flow condi-
tions. Breakthrough curves incorporating all effects simulta-
neously led to a more complete understanding of large-scale
transport. Major results from these mean numerical simula-
tions are summarized as follows:

1. Incorporation of spatial variability resulted in faster vi-
rus transport, implying earlier breakthrough and higher peak
concentrations. These results showed that local models applied
at the field scale may significantly underestimate virus trans-
port in heterogeneous aquifers, as has been observed in other
work [e.g., Yates, 1995].

2. As the porous media becomes increasingly heteroge-
neous (i.e., as s f

2 increases), it was observed that virus trans-
port can be facilitated to such a degree that virus arrival actu-
ally preceded the arrival of a conservative tracer. Increased s f

2

implied an increasing amount of porous media belonging to
the high and low tails of the ln K distribution, reflecting the
presence of more high- and low-conductivity lenses. The inter-
pretation of this result is that viruses are excluded from the
lowest-conductivity regions because of restrictive pore sizes in
fine-grained materials relative to the colloid diameter (e.g.,
viruses are excluded from certain clays and from internal (in-
tragrain) porosity) but are able to move through the higher
conductivity lenses which are characterized by higher pore
water velocities. Therefore increasing the degree of heteroge-
neity resulted in faster breakthrough of viruses transported
through the media at the high end of the ln K distribution.

3. As the mean ln K value increased, viruses broke through
earlier. Higher-conductivity material is typically characterized
by larger soil grains and pore diameters thereby an increased
“accessible pore zone” for virus transport. Stochastic mean and
modified local breakthrough curves differed the most for less
conductive materials, indicating that input parameters play a
less significant role in highly conductive aquifers. Because
more conductive aquifers would be characterized by fewer
virus/grain interactions, it would be anticipated that transport
behavior in such aquifers would be closer to that of a conser-
vative tracer (as seen in the mean simulations).

4. The stochastic and modified local models differed
greatly in their sensitivity to the virus diameter (dp). Incorpo-
ration of aquifer heterogeneity led to a much greater range of
virus diameters for which significant breakthrough occurred.
As s f

2 increased, breakthrough of the smallest colloids was
faster, which could be interpreted as being due to increased
availability of accessible pores. In addition, mean model output
became less sensitive to s f

2 as the mean hydraulic conductivity
increased for all diameters tested, although smaller colloids
were more sensitive to the aquifer parameters (Kg and s f

2)
than larger particles. However, the stochastic model may pre-
dict a concentration that is too high for the largest colloid sizes
(i.e., 1–10 mm, which is greater than the size of viruses which
are the focus of this work) because of the poor h* parameter-
ization of gravity effects.

5. When virus attachment is modeled as first-order adsorp-
tion rather than colloid filtration but with the same “attach-
ment” rate (i.e., a# ch0 5 k# c), the colloid filtration model
predicted significantly earlier breakthrough than the adsorp-
tion model. Therefore the more physically based colloid filtra-
tion model may capture significant effects in a heterogeneous
aquifer which are not incorporated in an empirical adsorption
model. Quantification of the mean and variability of the colli-
sion efficiency (a# c) also seems to be an important factor in
correctly predicting virus transport in heterogeneous aquifers.

6. As anticipated for the case in which viruses are under-
going first-order inactivation, virus breakthrough was signifi-
cantly lower than for the “conservative” (nondecaying) case.
Inactivation of viruses associated with solid surfaces had a
greater effect on breakthrough than inactivation of free vi-
ruses, indicating that accounting for differences in inactivation
rates between the two phases is an important feature of the
stochastic result.

On the basis of a qualitative comparison of numerical results
and field observations, the stochastic approach has yielded
insight into field-scale transport behavior. For example, early

Figure 6. Sensitivity of mean model free virus breakthrough
to free (k# dc) and attached (k# ds) virus inactivation rates.
Breakthrough curves of mean virus transport for the base-case
parameters indicated in Table 2 but including inactivation Þ 0
are shown.
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virus breakthrough attributed to flow through macropores or
to size exclusion effects was captured in the stochastic mean
model using a higher ln K variance value. In order to predict
large-scale virus transport using this approach, some informa-
tion regarding the degree of aquifer heterogeneity (e.g., s f

2 and
Kg) would therefore be required. The model output for even
the simple conditions of a steady flow field indicate the impor-
tance of aquifer and collision efficiency variability on transport.

Tremendous progress has been made in recent years in un-
derstanding local-scale virus transport processes and in per-
forming small in situ field-scale studies (i.e., of the order of
10 m). The fundamental results in this paper present one
method for incorporating physical heterogeneity into mathe-
matical predictions of virus transport at the larger field scale.
In order to further advance our understanding of larger-scale
transport and, in turn, develop more physically based wellhead
protection programs, quantification of variability of the differ-
ent input parameters to this model is essential. In future field
studies, measurements of the spatial variability of the collision
efficiency in particular would be extremely useful in predicting
virus transport. In order to comprehensively test the stochastic
model, two efforts are needed. First, the model results should
be compared to numerical validating experiments to assess the
limitations of the theory. Second, if the theory is found to be
robust even under a limited set of conditions, then the stochas-
tic model should be compared to an appropriate three-
dimensional data set of large-scale virus (or abiotic colloid)
transport at a well-characterized field site. To date, no such
data set is available. Until it is, the mean virus transport model
developed in this paper provides insight into the predicted
relationship among local transport processes (advection, dis-
persion, attachment, detachment, and inactivation) at larger
scales, indicating the significant differences between field-scale
virus transport evaluated using a laboratory-scale model and a
stochastic mean model, and providing a theoretical basis for
data collection in the future.

Appendix A
In order to solve this system of equations for dZc(k) and

dZs(k), it is necessary to carry out an intermediate transfor-
mation [Miralles-Wilhelm and Gelhar, 1996a, b; Rehmann,
1998] consisting of three main steps:

1. Solve a simplified system of equations equivalent to
(19a) and (19b) in order to obtain dZc(k) and dZs(k) as
functions of the conservative quantities dZĉ(k) and dZŝ(k).
The equivalent homogeneous set of equations is

­dZc

­t 5 a1dZc 1 b1dZs (A1)

­dZs

­t 5 a2dZc 1 b2dZs (A2)

where a1, a2, b1, and b2 are unknown effective loss and gain
coefficients which may differ from the mean values (2(k# dc 1
k# c 1 a# ch0), r(k# c 1 a# ch0), k# yr#/r , and 2r#(k# ds 1 k# y),
respectively). Solution of this system of equations introduces
the variables dZĉ(k) and dZŝ(k) (which represent conserva-
tive perturbation expressions) using the initial condition
dZc(k) 5 dZĉ(k) and dZs(k) 5 dZŝ(k) at time 5 0. The
result is

dZc 5 H dZĉ

z
@~a1 2 b2!~ew1t 2 ew2t! 1 ~ew1t 1 ew2t! Î~a1 2 b2!

2 1 4a2b1#

2 Î~a1 2 b2!
2 1 4a2b1

1 dZŝ

b1~ew1t 2 ew2t!

Î~a1 2 b2!
2 1 4a2b1

J (A4)

dZs 5 H dZŝ

z
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1 dZĉ
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where

w1 5
1
2
@~a1 1 b2! 1 Î~a1 2 b2!

2 1 4a2b1#

w2 5
1
2
@~a1 1 b2! 2 Î~a1 2 b2!

2 1 4a2b1#

2. Substitute these simplified solutions for dZc(k) and
dZs(k) in terms of dZĉ(k) and dZŝ(k) back into the original
system of equations (19a) and (19b) to obtain a coupled system
of ordinary differential equations for the conservative quanti-
ties dZĉ(k) and dZŝ(k). This coupled system of equations is
solved for these variables to yield two independent solutions:

dZĉ 5 F1~t!
1 2 e2b*t

b* (A5)

dZŝ 5 F2~t!
1 2 e2b*t

b* (A6)

where

b* 5 @ik1v# 1 kikjDij 1 ~~k# c 1 a# ch0 1 k# dc! 1 a1!#

1 @~k# y 1 k# ds! 1 b2#

F1~t! 5 ~ f1 2 a1f2!/~1 2 a1a2!

F2~t! 5 ~ f2 2 a2f1!/~1 2 a1a2!
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a2 5 2a2E1/@2E1~a1 2 b2! 1 E2ÎG#

G 5 ~a1 2 b2!
2 1 4a2b1

E1 5 ew1t 2 ew2t

E2 5 ew1t 1 ew2t

f1 5
2 ÎG
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r

s#S k# y

1
r# r sarbrKg

br 1 b2D G
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f2 5
2 ÎG

~2E1~a1 2 b2! 1 E2ÎG!
H dZfF r

r# c# ~b1 1 a# ch1 1 b3h0!

2
­s#
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r# r sarbrKg
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r# r sarbrKg
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r

r# c# a# ch2dZvi 1
r
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3. Last, obtain uncoupled expressions for the Fourier-

Stieltjes amplitudes for both free and attached viruses (dZc(k)
and dZs(k)) by substituting (A5) and (A6) back into (A3) and
(A4). The uncoupled expressions for dZc(k) and dZs(k) are

dZc 5
1 2 e2b*t

b* H dZfF2c# ~a# ch1 1 b1 1 b3h0 1 b4!
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r sarbrKg
br

r
1 b2
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dZs 5
1 2 e2b*t

b* H dZfF c#
r
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­s#
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r sarbrKg
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where Gi 5 2­c# /­z i. These final expressions are used to
evaluate the cross-perturbation terms in the mean equations
(16a) and (16b).

Appendix B
The integrals in the cross perturbations of (21) through (29)

were evaluated for the highly stratified case in which d 5 l3/l1

,, 1 (l1 5 l2) [Gelhar, 1987]. The cross-perturbation terms
expressed in (16a) and (16b) can be defined in terms of four
integrals,
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­s#
­t

r sarbrKg
br

r#

2 s#S ~k# ds 1 k# y!
r sarbrKg

br

r# 1 ~b2 1b5!D G I1ij 1
r

r# c# a# ch2I2ijJ
(B4)

c9d91 5 2c# I4ij
~1! (B5)

s9d92 5 2s#I4ij
~2! (B6)

c9d93 5 2c# h0I4ij
~3! (B7)

c9d94 5 2c# I4ij
~4! (B8)

s9d95 5 2s#I4ij
~5! (B9)

where

I1 i j 5 EEE
2`

`

S 1 2 e 2 b*t

b* Sff~k! dkD (B10)

I2 i j 5 EEE
2`

`

S 1 2 e2b*t

b* Sfvj~k! dkD ~ j 5 1, · · · , 3!

(B11)

I3ij 5 EEE
2`

`

S 1 2 e2b*t

b* Svivj~k! dkD ~ j 5 1, · · · , 3! (B12)

I4ij
~m! 5 EEE

2`

`

S 1 2 e2b*t

b* Sdmdm~k! dkD
~m 5 1, · · · , 5 not a summation index! (B13)

where integrals are over wave number space (k1, k2, and k3)
and b* 5 (ik1v# 1 kikjDij 1 b0), b0 5 [((k#c 1 a# ch0 1 k#dc) 1 a1)
1 (k#y 1 k#ds 1 b2)], and

Sff~k! 5
s f

2l1l2l3

p2~1 1 l1
2k1

2 1 l2
2k2

2 1 l3
2k3

2!2 (B14)

Sdidi~k! 5
sdi

2 l1il2il3i

p2~1 1 l1 i
2 k1

2 1 l2 i
2 k2

2 1 l3 i
2 k3

2!2 (B15)

In all simulations presented in this paper, it is assumed that the
correlation scales for the random portions of the adsorption,
collision efficiency, and detachment coefficients are equal to
the ln K correlation scales [see, e.g., Miralles-Wilhelm and
Gelhar, 1996b]. From Gelhar and Axness [1983, equation (28a)]
the Fourier-Stieltjes amplitude for specific discharge for an
anisotropic porous medium is derived in terms of the Fourier-
Stieltjes amplitude for hydraulic conductivity. For the case in
which the x1 axis is aligned with the mean flow direction such
that v# 1 5 v# , v# 2 5 v# 3 5 0 and for the case of mean flow
parallel to the bedding assumed in this paper where J2 5 J3 5
0, the corresponding Fourier-Stieltjes amplitude for mean
pore velocity can be inferred to be

dZvj~k! 5
KgJ1

n S d j1 2
kjk1

k2 D dZf~k! (B16)

where d j1 is the Kronecker delta (d j1 5 1 for j 5 1 and 5 0
for j Þ 1), k2 5 k1

2 1 k2
2 1 k3

2, and terms are summed over
j . Recalling that S f v j

(k)dk 5 E [dZ f(k)dZ*v j
(k)] and

Sv iv j
(k)dk 5 E[dZv i

(k)dZ*v j
(k)], each integral is evaluated
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using the following steps: (1) Multiply through by the complex
conjugate of the denominator. (2) Make the change of vari-
ables ui 5 l iki and neglect local dispersion, since local dis-
persivity is small relative to the horizontal correlation scale. (3)
Express exponentials as a complex sum, that is, e2(iu1v# t/l1) 5
cos (u1v# t/l1) 2 i sin (u1v# t/l1) thereby allowing elimination
of all odd terms in integral variables since these will contribute
nothing to the integral. (4) Take d 5 l3/l1 ,, 1(l1 5 l2). (5)
Integrate the components of each expression. Following this
methodology, each integral is evaluated analytically and is
found to be

I1ij 5
s f

2l1

v#
1 2 exp @2v# t/l1~x 1 1!#

~x 1 1!
(B17)

I2ij 5
v#
g

I1ij (B18)

I31j 5
v# 2

g2 I1ij (B19)

I4ij
~m! 5

sdm
2 l1m

v#
1 2 exp @2v# t/l1m~x 1 1!#

~x 1 1!
(B20)

where

g 5
v# n

KgJ1
and x 5

l1

v#
$@~k# c 1 a# ch0 1 k# dc! 1 a1#

1 @~k# y 1 k# ds! 1 b2#% .

Notation
As52[1 2 (1 2 n)5/3]/[2 2 3(1 2 n)1/3 1

3(1 2 n)5/3 2 2(1 2 n)2].
Ac5s f

2(b3h1 1 a# ch3 1 v# /g(b3h2 1 a# ch4))
2 I1 ij((P 1 b4)2 1 PQ) 2 (I4 ij

(1) 1
h0

2I4 ij

(3) 1 I4 ij

(4)).
Ax5s f

2Rb2 2 I1 ij
Q((P 1 b4) 1 Q 1

(k# dsR 1 b5)) 2 I4 ij

(2).
A(v) coefficient relating h* to pore water velocity

(e.g., for diffusion h* 5 A(v) exp (c10 ln
K), A(v) 5 a10 1 b10v), day21.

a1P56dp
22/3(3pm/BzT)22/3.

a1L51.5dp
13/8(4H/9pm)1/8.

a1G5(3/ 2)(0.00338)dp
2[(rp 2 r) g/(18m)]1.2.

a10, b10, c10 fitting coefficients for the diffusion portion
of single collector efficiency.

a11, b11, c11 fitting coefficients for the Van der Waal’s
forces portion of single collector efficiency.

a12, b12, c12 fitting coefficients for the gravitational
effects portion of single collector efficiency.

ai, bi parameters relating virus adsorption (i 5
1), virus detachment (i 5 2), collision
efficiency (i 5 3), inactivation of free
viruses (i 5 4), and inactivation of
attached viruses (i 5 5) to ln K (e.g., kc 5
a1 1 b1 ln K 1 d1).

ar, br fitting constants relating r(5rb/n) to ln K .
ac collision efficiency factor.
a# c mean collision efficiency factor.
a9c perturbation in collision efficiency.
aL local longitudinal dispersivity, m.
aT local transverse dispersivity, m.

a1 effective loss coefficient for free viruses,
day21.

a2 effective gain coefficient for attached
viruses, day21.

B51 2 2 R(Q 1 k# dsR) 2 R2(­I1 ij
/­t).

Bc5[s f
2(b3h1 1 a# ch3 1 v# /g(b3h2 1 a# ch4))

2 (I4 ij

(1) 1 h0
2I4 ij

(3)) 2 I1 ij
P((P 1 b4) 1

Q 1 (k# dsR 1 b5)) 2 (­I1 ij
/­t) PR].

Bs5s f
2R(b2 1 b5) 2 I1 ij

(PQ 1 [Q 1
(k# dsR 1 b5)]2) 2 (­I1 ij

/­t) R(Q 1
(k# dsR 1 b5)) 2 (I4 ij

(2) 1 I4 ij

(5)).
Bz Boltzmann’s constant, J K21.
b*5[ik1v# 1 kikjDij 1 ((k# c 1 a# ch0 1 k# ds)

1 a1)] 1 [(k# y 1 k# ds) 1 b2].
b1 effective gain coefficient for free viruses,

day21.
b2 effective loss coefficient for attached viruses,

day21.
C mass fraction of free viruses.
c# mean free-virus concentration (mass

fraction).
c9 perturbation in free-virus concentration

(mass fraction).
ĉ “conservative” free-virus concentration

(mass fraction).
x52(l1/v# )( Ax 1 (Bs/B)).
d effective grain diameter (d10), m.

dp diameter of viruses, m.
Dij local dispersion tensor, m2 d21.
D*d porous media molecular diffusion

coefficient, m2 d21.
dZc Fourier-Stieltjes amplitude for free-virus

concentration.
dZĉ Fourier-Stieltjes amplitude for conservative

free-virus concentration ( ĉ).
dZdi Fourier-Stieltjes amplitude for d i, i 5

1, z z z , 5.
dZf Fourier-Stieltjes amplitude for ln K .
dZs Fourier-Stieltjes amplitude for attached-

virus concentration.
dZŝ Fourier-Stieltjes amplitude for conservative

attached-virus concentration ( ŝ).
dZv i

Fourier-Stieltjes amplitude for pore water
velocity, m d21.

d ij Kronecker delta function.
d i random, uncorrelated portion of virus

adsorption (i 5 1), virus detachment (i 5
2), collision efficiency (i 5 3), free-virus
inactivation (i 5 4) and attached-virus
inactivation (i 5 5) coefficients (e.g., kc 5
a1 1 b1 ln K 1 d1).

d9i perturbation in d i (i 5 1, z z z , 5).
E[ ] expected value operator.

f natural logarithm of hydraulic conductivity
(ln K).

f# mean ln K .
f9 perturbation of ln K .

Gi52­c# /­z i.
g gravitational acceleration, m s22.
g5v# n/KgJ1.
H Hamaker constant, J.
h single collector efficiency, day21.

h*5[3(1 2 n)/ 2d]v ih .
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h# * mean h*, day21.
h*9 perturbation in h*, day21.

h05Kg
c10(a10 1 b10v# ) 1 Kg

c11(a11 1 b11v# ) 1
Kg

c12(a12 1 b12v# ).
h15Kg

c10c10(a10 1 b10v# ) 1 Kg
c11c11(a11 1

b11v# ) 1 Kg
c12c12(a12 1 b12v# ).

h25Kg
c10b10 1 Kg

c11b11 1 Kg
c12b12.

h351
2

[Kg
c10c10

2 (a10 1 b10v# ) 1 Kg
c11c11

2 (a11 1
b11v# ) 1 Kg

c12c12
2 (a12 1 b12v# )].

h45Kg
c10b10c10 1 Kg

c11b11c11 1 Kg
c12b12c12.

I1 ij
5(sf

2l1/v#)(1 2 exp [2v#t/l1(x 1 1)])/(x 1 1).
I4 ij

(m) 5(sdm
2 l1m/v# )(1 2 exp [2v# t/l1m(x 1 1)])/

(x 1 1), i 5 1, z z z , 5.
J1 hydraulic gradient in x1 direction, m m21.
K hydraulic conductivity, m d21.

Kg exp (f#).
kc virus adsorption coefficient, day21.
k# c mean virus adsorption coefficient, day21.
k9c perturbation in virus adsorption coefficient,

day21.
kdc inactivation rate for free viruses, day21.
k# dc mean free-virus inactivation rate, day21.
k9dc perturbation in free-virus inactivation rate,

day21.
kds inactivation rate for attached viruses, day21.
k# ds mean attached-virus inactivation rate,

day21.
k9ds perturbation in attached virus inactivation

rate, day21.
ki wave number (i 5 1, 2, 3), meter21.
ky virus detachment rate, day21.
k# y mean virus detachment rate, day21.
k9y perturbation in virus detachment rate,

day21.
l i hydraulic conductivity correlation scale (i 5

1, 2, 3), m.
l i j

d j correlation scale ( j 5 1, z z z , 5) in the i
direction (i 5 1, 2, 3), m.

m dynamic viscosity, N s m22.
n effective porosity.

nb total porosity.
P5b1 1 a# ch1 1 b3h0 1 a# ch2v# /g .
Q5k# yR 1 b2.
qi specific discharge or Darcy flux, m d21.
R5rsarbrKg

br/r# .
r5rb/n .
r# mean rb/n .

r9 perturbation in rb/n .
Rff covariance function of ln K field.

r density of solution, kg m23.
rb bulk density of porous media, kg m23.
rp buoyant density of viruses, kg m23.
rs density of soil grains, kg m23.
S mass fraction of attached viruses.
s# mean attached-virus concentration (mass

fraction).
s9 perturbation in attached-virus concentration

(mass fraction).
ŝ “conservative” attached-virus concentration

(mass fraction).
Sff spectrum of ln K field, m3.
s f

2 variance of ln K field.

sd i

2 variance of d i field (i 5 1, z z z , 5).
t time, d.

T temperature, K.
v i pore water velocity, m d21.
ve effective velocity of free viruses, m d21.
v# mean pore water velocity (aligned with x1

axis), m d21.
v9i perturbation in pore water velocity, m d21.
xi orthogonal distance (i 5 1, 2, 3), m.
j i separation vector, m.
z i coordinate system moving with free-virus

plume (i 5 1, 2, 3), m.
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